
Microbial communities are intricate ecosystems of microorganisms. Discerning each dimension of these interactions is crucial to 
unraveling the principles governing the range of community behavior and their dynamics. However, the complexity and scale of 
microbial communities lead to a combinatorial explosion of potential community interactions and pose significant challenges for 
computational modeling and experimental exploration.
In this project, we propose a machine-learning framework that predicts metabolic and inhibitory interactions in a microbial 
community using a suite of novel features derived from the members’ genotypes.  The microbial interaction classifier is being 
designed to accurately predict the interaction type and strength between community members in a given environment.  This 
classifier uses several novel and orthogonal features: scoring metrics of metabolic cooperation and competition, secondary 
metabolic inhibition, and functional similarity of the annotated genomes.  The classifier is being trained on a large dataset of 
microbial interactions, and is expected to accurately predict interactions between diverse microbes in new environments and 
identify stable combinations that can guide the rational design of a synthetic microbial community.  This computational approach 
can circumvent experimental limitations, improve the efficiency of selecting communities worthy of study, and mechanistically 
investigate microbial community dynamics.

From Genotypes to Ecosystems: Unraveling Microbial Interactions through Machine 
Learning to Engineer Stable Synthetic Communities
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The correlation of each CommScores metric against fold changes in co-cultures. We observe that the cross-feeding scores 
(MIP and BSS) elicited the greatest correlations with member fold-changes.

Validation with Arabidopsis microbiome
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CommScores are a set of scores that encompass various 
dimensions of metabolic interactions in microbial communities.

We built a random forest classifier that can predict 
pairwise interactions between microbes given their 
genomes. Currently this classifier uses the following 
feature for prediction:
Metabolic network (CommScores)
Biosynthetic gene cluster information (antiSMASH)
Functional similarity (RAST)
In the future, we plan to add features from the 
inhibition prediction pipelines

Functional 
similarity

MRO MIP GRD NRPS …

M1-M2 0.682 0.805 3 0.124 1 …

M1-M3 0.534 0.557 6 0.569 0 …

M2-M3 0.395 0.702 5 0.467 2 …

… …

M221-M200 0.522 0.667 0 0.001 5 …

BGCsCommScoresRAST

Interaction

M1-M2 negative

M1-M3 non-negative

M2-M3 negative

… …

M221-M200 non-negative
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Prediction of inhibition:
Biosynthetic Gene Cluster (BGC) activity prediction
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We validated our microbial interaction classifier 
through experimental pairwise interaction data of 
microbes (224 strains) isolated from the 
Arabidopsis phyllosphere (Helfrich et al., 2018). 
Our classifier shows high accuracy in predicting 
non-negative interactions and also provides 
insights into the important features

precision recall f1-score support

negative 0.78 0.51 0.62 162

non-negative 0.85 0.95 0.90 462

accuracy 0.84 624References
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We validate CommScores by recapitulating an experimental study of pairwise interactions in an Arabidopsis microbiome (Schafer 
et al., 2023). Here, we compare CommScores metrics to fold changes in co-culture abundances on Arabidopsis leaf.

Predicting interactions in the Arabidopsis microbiome

Prediction of pairwise interactions (combining metabolic and 
BGC features)

Prediction of inhibitory microbes
We validated our BGC activity prediction pipeline using experimental inhibition 
screening data from two datasets: Dataset 1 (Getzke et al., 2023) containing 206 
strains and Dataset 2 (Helfrich et al., 2018) containing 198 strains. Our workflow 
predicts >80% of the inhibitory microbes in both datasets.

We developed a machine learning workflow that predicts the probabilities of 
antibiotic activity of the BGCs of a given genome.

Prediction of resistant microbes
We validated our BGC activity prediction pipeline using experimental inhibition 
screening data from two datasets: Dataset 1 (Getzke et al., 2023) containing 206 
strains and Dataset 2 (Helfrich et al., 2018) containing 198 strains. Currently, our 
pipeline predicts ~40% of the resistant microbes from the two datasets. Next, we 
plan to optimize parameters and thresholds to improve our prediction accuracy.
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1. Optimization of the parameters used in the inhibition prediction pipelines
2. Extraction of features from the inhibition prediction pipelines and their incorporation into the pairwise interaction classifier
3. Test and engineer stable synthetic communities based on the results of the pairwise interaction classifier

Prediction of inhibition:
Biosynthetic Gene Cluster (BGC) resistance prediction

We developed a (data-independent) pipeline that predicts the resistance of a 
given genome to an antibiotic BGC.

Probabilities of antibiotic activities of BGCs in a genome

BGC cluster similarity results

Resistance marker similarity results


